Zastosowania procesorow sygnatowych

WPROWADZENIE DO
PROCESOROW
SYGNALOWYCH

Opracowanie: Grzegorz Szwoch

Politechnika Gdanska, Katedra Systemow Multimedialnych

Wprowadzenie

= Sygnat definiujemy jako ciggty zbidr wartosci pozyskiwanych z danego zrodta
(czujnika, mikrofonu, itp.), potozonych na osi czasu.

= Sygnat cyfrowy — zbidr probek pozyskiwanych ze zrédta, zapisanych w postaci bitow.
= Cyfrowe przetwarzanie sygnafu za pomoca cyfrowych algorytmow obejmuje:

— obrébke sygnatu, np. filtracje w celu usuniecia zaktocen,

— analize sygnatu, np. obliczenie wartosci sredniej, wyodrebnienie informacji,

— przestanie wynikow, np. wystanie informacji sterujgce,;.

= Cyfrowy procesor sygnatowy (digital signal processor) — uktad elektroniczny
wyspecjalizowany w cyfrowym przetwarzaniu sygnatow, zwykle wykonywanym
,W czasie rzeczywistym”, w odrdznieniu od procesorow
ogoblnego przeznaczenia (CPU).

Przyktad praktycznego zastosowania

= Mikrofalowy czujnik radarowy jest podtgczony do procesora sygnatowego.
= Wiazka radarowa jest wysytana (Tx), odbierana jest wigzka odbita (Rx).

" Procesor sygnatowy oczyszcza (filtruje) sygnat oraz oblicza czestotliwosé sygnatu,
a na jej podstawie oblicza predkosc pojazdu.
= Wynik przetwarzania steruje wyswietlaczem predkosci.

— TWOJA
L pREDKOSE

§ #
g £
g{-::xo{_(\

Procesor
sygnatowy

Low pass

Dlaczego nie mikroprocesor?

Dlaczego do przetwarzania sygnatu nie uzy¢ zwyktego mikroprocesora (CPU)?

= Mikroprocesor jest uktadem ogdlnego przeznaczenia — wykonuje réznorodne
operacje, nie traktuje przetwarzania sygnatu w szczegdlny sposob.

= Wymaga systemu operacyjnego; klasyczne systemy nie zapewniajg przewidywanego
czasu wykonania operacji (potrzebny jest system operacyjny czasu rzeczywistego).

= Wymagajg dodatkowych elementow (petny mikrokomputer), ze wzgledu na duze
rozmiary nie nadajg sie do systemow wbudowanych (embedded systems).

= Wymagajg duzych czestotliwosci taktowania zegara, majg wysokie zuzycie energii,
wysoki koszt eksploatacji.

Wspotczesnie, mikrokomputery (zwykle oparte na procesorach ARM) czesto zastepujg
klasyczne procesory sygnatowe w ich dotychczasowych zastosowaniach.

Dlaczego procesor sygnatowy?

= Architektura i lista rozkazow wyspecjalizowana do przetwarzania probek cyfrowego
sygnatu.

= Zwykle niskie czestotliwosci taktowania, zwtaszcza w procesorach
statoprzecinkowych.

= Mate zuzycie energii w porownaniu do mikroprocesora.
= Wbudowane liczne interfejsy — tatwos¢ w pozyskiwaniu probek sygnatow.
= Mate rozmiary — mozliwos¢ zastosowania w systemach wbudowanych.

= Stosunek czasu przetwarzania do ,kosztow” (zuzycia zasobow) znacznie lepszy niz
dla mikroprocesora.

Zastosowania

Kiedy zastosujemy procesor sygnatowy?
= do ztozonego przetwarzania sygnatu w czasie rzeczywistym,
= jako element urzadzenia (np. aparatu fotograficznego),
= przy koniecznosci niskiego zuzycia energii (np. zasilanie z baterii),
= gdy przetwarzanie sktada sie z typowych operacji PS (filtry, FFT).

Kiedy zastosujemy mikrokomputer?
= do przetwarzania tylko offline (,,na plikach”),
= gdy jest koniecznosc stosowania systemu operacyjnego (np. w smartfonie),
= gdy mikrokomputer i tak jest potrzebny do wykonania innych operacji,
= gdy potrzebna jest elastycznosc, a zuzycie energii i wymiary urzadzenia s3 mniej
istotne.

Przetwarzanie sygnatu w trybie online

Procesory sygnatowe stosujemy zazwyczaj do przetwarzania sygnatow ,,na zywo”
(w trybie online).
= Sygnat jest nieskoriczony — nowe probki caty czas naptywaja.
= Kazda probka musi zostac przetworzona zanim nadejdzie kolejna
(przetwarzanie w czasie rzeczywistym, probka po préobce).

= Ewentualnie, probki mogg by¢ przetwarzane po zebraniu ich wymaganej liczby
— przewarzanie blokowe (np. obliczanie FFT).

Przyktad: analiza dzwieku z mikrofonu.

= Czestotliwos¢ probkowania jest rowna 48 000 probek na sekunde.
= Maksymalny czas przetwarzania jednej probki: 1 / 48 = 0,0208 ms.

Przetwarzanie w czasie rzeczywistym

Pojecie ,,przetwarzanie w czasie rzeczywistym” (real-time processing) jest definiowane
roznorodnie, zaleznie od kontekstu.

Na potrzeby cyfrowego przetwarzania sygnatow mozemy przyjac definicje:
przetwarzanie w czasie rzeczywistym wymaga, aby:

tp+tn<ts czyli tb>0
gdzie:
= ts—czas pomiedzy kolejnymi probkami sygnatu na wejsciu,
" tp — czas przetwarzania probki,
" tn —czas narzutu — operacji nie zwigzanych z przetwarzaniem sygnatu,
" tb —czas bezczynnosci — czekania na kolejng probke.

Czas narzutu tn w systemie czasu rzeczywistego powinien byc staty.

Algorytmy przetwarzania sygnatu

Algorytmy uruchamiane na procesorach sygnatowych wykorzystujg podstawowe
procedury przetwarzania sygnatu:

" mnozenie, dodawanie, operacje logiczne (réwniez wykonywane wektorowo),
= przeksztatcenie Fouriera (FFT) i kosinusowe (DCT),

= splot / filtracja FIR,

= korelacja, autokorelacja,

= filtracja lIR,

" mnozenie macierzy

Procesor sygnatowy jest zoptymalizowany do wykonywania tych operacji.
Na ich podstawie budowane sg ztozone algorytmy, np. kompresji sygnatu.

Moduty uruchomieniowe

Modut uruchomieniowy (evaluation board/module):
= ptytka zawierajgca procesor sygnatowy, interfejsy zewnetrzne, pomocnicze uktady
(kodeki, pamied), itp.,
= stuzy do uruchamiania, testowania, poprawiania, optymalizowania algorytmow
tworzonych przez programiste,
= ptytka wspotpracuje z komputerem osobistym (przez USB),

= pozwala na wykonywanie programu krok po kroku i podglad stanu procesora,
Za pomocgy debug probe,

= w docelowym urzadzeniu montowany jest sam procesor, nie cata ptytka
uruchomieniowa.

Moduty uruchomieniowe

Modut uruchomieniowy z procesorem Texas Instruments C5535, wykorzystywany
podczas realizacji laboratorium ZPS

p— ‘- 'lh—"’ - : | C5535 DSP
= rr‘._.. -; ' Wireless
i e R TR Interface

= |
....|

USB connector

s tnn e

_.;‘zazx‘

rs

111 L
SO R LB ISR
= e, ‘
pe s AT

. SPI Flash
USB l: llllllll
Emulation e "SR E | B B AN
Connector . 'j{ ‘“'“ "!. Expansion
=Y. A, o S BIE T T e Connector
';‘.‘r‘;,:f"la?ﬂ f,']':~‘~ UL Y % 2 B8 iy
: R 3 —— AIC3204
Display 0 | tsass (e i M Stereo In
Jgp— Stereo Out
Pushbuttons — S S

TMDX5535EZDSP USB Stick Development Kit

Tworzenie programu na procesor sygnatowy

= Kod maszynowy (machine code) — binarny zestaw instrukcji dla procesora
(np. mnozenie, skok, petla, itp.).

" Programista tworzy kod Zzrédtowy (source code) programu w postaci tekstowej:
— asembler — jezyk niskopoziomowy,
— C, C++, itp. — jezyk wysokopoziomowy.

= Kompilator (compiler) przeksztatca kod zrodtowy na kod maszynowy.

= Konsolidator (linker) taczy skompilowane moduty (modules)
w program wykonywalny (executable).

= Gotowy program jest uruchamiany na procesorze.

Asembler

= Asembler (assembler) jest tekstowg reprezentacja kodu maszynowego.

" |nstrukcje procesora sg zapisywane w formie mnemonikow,
np. MOV - skopiuj dane, MPY — przemnoz, itp.

= Kod asemblera jest pisany na konkretny typ procesora.

" Pracuje sie bezposrednio na procesorze (np. na rejestrach).

= Programista ma niemal petng kontrole nad wynikowym kodem maszynowym.
= Mozna w ten sposob pisa¢ zoptymalizowane algorytmy.

= Jest to trudne, wymaga duzego doswiadczenia i dobrej znajomosci procesora.

= (Nie piszemy kodu asemblera na laboratorium ZPS, ale wykorzystujemy gotowe
algorytmy napisane w asemblerze.)

Asembler

Fragment przyktadowego programu w asemblerze na PS:

| | RPTBLOCAL OuterLoopEnd-1 ;outer loop: process a new input
MOV *ARO+ << #16, AC1 ; HI(AC1) = x(n)
| |RPTBLOCAL InnerLoopEnd-1 ;inner loop: process a bi-quad
NOP_16 ; CPU_116: Remark 5682
|| MPYM *AR1+, AC1, ACO ; ACO = bo*x(n)
MACM *AR1+, *(AR6+TO), ACO ; ACO += bl*x(n-1)
MACM *AR1+, *AR6, ACO ; ACO += b2*x(n-2)
MoV HI(AC1), *(AR6+T1) 5 x(n) replaces x(n-2)
MASM *AR1+, *(AR4+T0), ACO ; ACO -= aB*y(n-1)
MASM *AR1+, *AR4, ACO, AC1 ; AC1l -= al*y(n-2)
SFTS AC1, #1 ; AC1 *= 2 (correction for Q14)
MoV rnd(HI(AC1)), *(AR4+T1) 5 y(n) replaces y(n-2)
InnerLoopEnd:
AMOV AR7, AR1 ;reinitialize coeff pointer
|| mov rnd(HI(AC1)), *AR2+ ;store result to output buffer
OuterlLoopEnd:

MOV AR4, *AR3 ; Update delay pointer

Jezyk C

= Jezyk C (czasami tez C++) jest czesto stosowany w programowaniu PS jako jezyk
,wWysokiego poziomu”.

= Polegamy na kompilatorze, ze stworzy z kodu zrédtowego C wystarczajgco wydajny
kod maszynowy.

= Czesto nie jest to mozliwe, kompilator nie potrafi odgadngc wszystkich intencji
programisty, czesto ,,gra bezpiecznie” (program ma dziatac¢ poprawnie,
niekoniecznie najszybciej).

= Trzeba uzywac specjalnych dyrektyw kompilatora (pragma).

= W porownaniu z asemblerem, wynikowy kod jest zwykle wolniejszy i zajmuje wiecej
pamieci.

= Pisanie programow jest za to o wiele szybsze i prostsze.
* (Kod na laboratorium ZPS bedzie tworzony w jezyku C.)

Jezyk C

Fragment przyktadowego programu w C na DSP:

// Real FFT of length N/2

for (i =0; i < N/ 2; i++) {
pRFFT _In[2 * i] = pInput[2 * i]; //arrange real input sequence to
pRFFT _In[2 * i + 1] = pInput[2 * i + 1]; //N/2 complex sequence..

}

memcpy (pRFFT_InOrig, pRFFT_In, N * sizeof (float));
tw_gen (w, N / 2);

split_gen (A, B, N / 2);

twiddle = (float *) w;

// Forward FFT Calculation using N/2 complex FFT..

DSPF_sp fftSPxSP (N / 2, pRFFT_In, twiddle, pTemp, brev, rad, 0, N / 2);
// FFT Split call to get complex FFT out of length N..

FFT_Split (N / 2, pTemp, A, B, pRFFT_Out);

// Inverse FFT calculation

// IFFT Split call to get complex Inv FFT out of length N..

IFFT_Split (N / 2, pRFFT_Out, A, B, pTemp);

// Inverse FFT Calculation using N/2 complex IFFT..

DSPF_sp ifftSPxSP (N / 2, pTemp, twiddle, pRFFT_InvOut, brev, rad, @, N / 2);

C i Asembler razem

= Czy mozna potaczyc oba jezyki w jednym programie? Tak!
= Konsolidator pozwala fgczy¢é moduty napisane w Ci w asemblerze.

= Krytyczne operacje przetwarzania sg pisane w asemblerze, zoptymalizowane
pod katem szybkosci (np. obliczanie FFT).

= Ogolna ,logika” programu jest pisana w C.

= Zazwyczaj mozemy wykorzysta¢ zoptymalizowane procedury (np. FFT, filtry)
napisane w asemblerze dla naszego procesora przez innych programistow, tgczac je
z haszym kodem.

= Np. Texas Instruments dostarcza dla naszego procesora C5535 biblioteke DSPLIB,
zawierajgcg zoptymalizowane implementacje najczesciej wykorzystywanych
operacji przetwarzania sygnatow.

Srodowisko programistyczne

Do tworzenia oprogramowania na procesory sygnatowe uzywa sie srodowiska
programistycznego ztozonego z:

" narzedzi programistycznych (IDE)
— edytora kodu zrodtowego,
— kompilatora,
— debuggera,
= bibliotek programistycznych (SDK)
— funkcje obstugi procesora (Processor SDK), w tym system operacyjny,
— funkcje obstugi ptytki uruchomieniowej (Board SDK),
— funkcje przetwarzania sygnatu (np. DSPLIB),
— funkcje pomocnicze (np. obstuga sieci).

Etap tworzenia programu

= Modut uruchomieniowy podtgczony do komputera PC przez USB.
= Program skompilowany w trybie Debug — wytgczone optymalizacje kodu.
= Skompilowany program jest przesytany na procesor sygnatowy i uruchamiany.

= Mozliwos¢ debugowania — zatrzymania programu, sprawdzenia stanu zmiennych,
znalezienia btedow.

= Sprawdzenie poprawnosci dziatania programu.

= Do testowania wydajnosci nalezy skompilowac¢ program w trybie Release
— wigczone optymalizacje kodu. Uwaga: taki program nie nadaje sie do
debugowania!

Gotowy program

= Program jest gotowy gdy dziata zgodnie z oczekiwaniami
— bez btedéw i wystarczajgco szybko.

= Program jest kompilowany w trybie Release.

= Program jest wgrywany do pamieci flash samodzielnego procesora (bez ptytki) za
pomocyg specjalnego modutu.

= Procesor jest gotowy do montazu w docelowym urzadzeniu.
= Nie ma juz mozliwosci wgladu w prace procesora — mamy tylko wyniki jego pracy.

= Dlatego trzeba wtozy¢ wystarczajgco duzo wysitku w tworzenie prawidtowo
dziatajgcego programu.

Miary wydajnosci procesora sygnatowego

Wydajnosc¢ obliczeniowa:
= MIPS —liczba milionéw instrukcji na sekunde,
= FLOPS —liczba operacji zmiennoprzecinkowych na sekunde, zwykle z przedrostkiem,
np. MFLOPS — mega (miliony),
= MMACS - liczba miliondw operacji MAC (x < x + a x b), specyficznych dla DSP,
na sekunde.

Wydajnosc¢ energetyczna:

= zuzycie mocy na 1 MHz czestotliwosci zegara procesora, w mW/MHz, przy podanym
napieciu zasilania, mierzone pod obcigzeniem (active) i w spoczynku (standby).

Cykle procesora

= Procesor jest taktowany zegarem o ustalonej czestotliwosci, np. 100 MHz.

= Cykl procesora to jeden takt sygnatu zegarowego. Np. 100 MHz oznacza
100 milionow cykli na sekunde.

= Kazda instrukcja procesora wymaga okreslonej liczby cykli procesora (zwykle jeden
cykl, czasami wiecej) do jej wykonania.

= Budzet procesora oznacza liczbe cykli, jakg mozemy przeznaczy¢ na operacje
przetwarzania.

= Przykfad: taktowanie 100 MHz, przetwarzamy préobki dzwieku z czestotliwoscia
48 kHz - na jedna probke mamy ok. 2083 cykli procesora.

= Jezeli nie wykorzystujemy budzetu, czesto mozemy obnizy¢ czestotliwosc
taktowania procesora (np. do 80 MHz) i oszczedzic¢ energie.

Alternatywy dla procesorow sygnatowych

Wspoiczesne alternatywy dla klasycznych procesorow sygnatowych:

procesory hybrydowe (np. ARM + DSP),

uktady SoC (system on chip) - zwykle mikroprocesory ARM + GPU + pamieg,
czasami posiadajg rdzenie DSP,

uktady FPGA — programowalna architektura sprzetowa,

uktady ASIC — mikroprocesory o statej architekturze, dostosowanej do programu,
GPU — procesory graficzne, wspomaganie zrownoleglonych obliczen,

NPU — neural processor unit, do obliczen zwigzanych z sieciami neuronowymi.

	Slajd 1
	Slajd 2: Wprowadzenie
	Slajd 3: Przykład praktycznego zastosowania
	Slajd 4: Dlaczego nie mikroprocesor?
	Slajd 5: Dlaczego procesor sygnałowy?
	Slajd 6: Zastosowania
	Slajd 7: Przetwarzanie sygnału w trybie online
	Slajd 8: Przetwarzanie w czasie rzeczywistym
	Slajd 9: Algorytmy przetwarzania sygnału
	Slajd 10: Moduły uruchomieniowe
	Slajd 11: Moduły uruchomieniowe
	Slajd 12: Tworzenie programu na procesor sygnałowy
	Slajd 13: Asembler
	Slajd 14: Asembler
	Slajd 15: Język C
	Slajd 16: Język C
	Slajd 17: C i Asembler razem
	Slajd 18: Środowisko programistyczne
	Slajd 19: Etap tworzenia programu
	Slajd 20: Gotowy program
	Slajd 21: Miary wydajności procesora sygnałowego
	Slajd 22: Cykle procesora
	Slajd 23: Alternatywy dla procesorów sygnałowych

