
WPROWADZENIE DO

PROCESORÓW

SYGNAŁOWYCH

Zastosowania procesorów sygnałowych

Opracowanie: Grzegorz Szwoch

Politechnika Gdańska, Katedra Systemów Multimedialnych

Wprowadzenie

▪ Sygnał definiujemy jako ciągły zbiór wartości pozyskiwanych z danego źródła
(czujnika, mikrofonu, itp.), położonych na osi czasu.

▪ Sygnał cyfrowy – zbiór próbek pozyskiwanych ze źródła, zapisanych w postaci bitów.

▪ Cyfrowe przetwarzanie sygnału za pomocą cyfrowych algorytmów obejmuje:

– obróbkę sygnału, np. filtrację w celu usunięcia zakłóceń,

– analizę sygnału, np. obliczenie wartości średniej, wyodrębnienie informacji,

– przesłanie wyników, np. wysłanie informacji sterującej.

▪ Cyfrowy procesor sygnałowy (digital signal processor) – układ elektroniczny
wyspecjalizowany w cyfrowym przetwarzaniu sygnałów, zwykle wykonywanym
„w czasie rzeczywistym”, w odróżnieniu od procesorów
ogólnego przeznaczenia (CPU).

Przykład praktycznego zastosowania

▪ Mikrofalowy czujnik radarowy jest podłączony do procesora sygnałowego.

▪ Wiązka radarowa jest wysyłana (Tx), odbierana jest wiązka odbita (Rx).

▪ Procesor sygnałowy oczyszcza (filtruje) sygnał oraz oblicza częstotliwość sygnału,
a na jej podstawie oblicza prędkość pojazdu.

▪ Wynik przetwarzania steruje wyświetlaczem prędkości.

Procesor
sygnałowy

Dlaczego nie mikroprocesor?

Dlaczego do przetwarzania sygnału nie użyć zwykłego mikroprocesora (CPU)?

▪ Mikroprocesor jest układem ogólnego przeznaczenia – wykonuje różnorodne
operacje, nie traktuje przetwarzania sygnału w szczególny sposób.

▪ Wymaga systemu operacyjnego; klasyczne systemy nie zapewniają przewidywanego
czasu wykonania operacji (potrzebny jest system operacyjny czasu rzeczywistego).

▪ Wymagają dodatkowych elementów (pełny mikrokomputer), ze względu na duże
rozmiary nie nadają się do systemów wbudowanych (embedded systems).

▪ Wymagają dużych częstotliwości taktowania zegara, mają wysokie zużycie energii,
wysoki koszt eksploatacji.

Współcześnie, mikrokomputery (zwykle oparte na procesorach ARM) często zastępują
klasyczne procesory sygnałowe w ich dotychczasowych zastosowaniach.

Dlaczego procesor sygnałowy?

▪ Architektura i lista rozkazów wyspecjalizowana do przetwarzania próbek cyfrowego
sygnału.

▪ Zwykle niskie częstotliwości taktowania, zwłaszcza w procesorach
stałoprzecinkowych.

▪ Małe zużycie energii w porównaniu do mikroprocesora.

▪ Wbudowane liczne interfejsy – łatwość w pozyskiwaniu próbek sygnałów.

▪ Małe rozmiary – możliwość zastosowania w systemach wbudowanych.

▪ Stosunek czasu przetwarzania do „kosztów” (zużycia zasobów) znacznie lepszy niż
dla mikroprocesora.

Zastosowania

Kiedy zastosujemy procesor sygnałowy?

▪ do złożonego przetwarzania sygnału w czasie rzeczywistym,

▪ jako element urządzenia (np. aparatu fotograficznego),

▪ przy konieczności niskiego zużycia energii (np. zasilanie z baterii),

▪ gdy przetwarzanie składa się z typowych operacji PS (filtry, FFT).

Kiedy zastosujemy mikrokomputer?

▪ do przetwarzania tylko offline („na plikach”),

▪ gdy jest konieczność stosowania systemu operacyjnego (np. w smartfonie),

▪ gdy mikrokomputer i tak jest potrzebny do wykonania innych operacji,

▪ gdy potrzebna jest elastyczność, a zużycie energii i wymiary urządzenia są mniej
istotne.

Przetwarzanie sygnału w trybie online

Procesory sygnałowe stosujemy zazwyczaj do przetwarzania sygnałów „na żywo”
(w trybie online).

▪ Sygnał jest nieskończony – nowe próbki cały czas napływają.

▪ Każda próbka musi zostać przetworzona zanim nadejdzie kolejna
(przetwarzanie w czasie rzeczywistym, próbka po próbce).

▪ Ewentualnie, próbki mogą być przetwarzane po zebraniu ich wymaganej liczby
– przewarzanie blokowe (np. obliczanie FFT).

Przykład: analiza dźwięku z mikrofonu.
▪ Częstotliwość próbkowania jest równa 48 000 próbek na sekundę.
▪ Maksymalny czas przetwarzania jednej próbki: 1 / 48 = 0,0208 ms.

Przetwarzanie w czasie rzeczywistym

Pojęcie „przetwarzanie w czasie rzeczywistym” (real-time processing) jest definiowane
różnorodnie, zależnie od kontekstu.

Na potrzeby cyfrowego przetwarzania sygnałów możemy przyjąć definicję:
przetwarzanie w czasie rzeczywistym wymaga, aby:

tp + tn < ts czyli tb > 0

gdzie:

▪ ts – czas pomiędzy kolejnymi próbkami sygnału na wejściu,

▪ tp – czas przetwarzania próbki,

▪ tn – czas narzutu – operacji nie związanych z przetwarzaniem sygnału,

▪ tb – czas bezczynności – czekania na kolejną próbkę.

Czas narzutu tn w systemie czasu rzeczywistego powinien być stały.

Algorytmy przetwarzania sygnału

Algorytmy uruchamiane na procesorach sygnałowych wykorzystują podstawowe
procedury przetwarzania sygnału:

▪ mnożenie, dodawanie, operacje logiczne (również wykonywane wektorowo),

▪ przekształcenie Fouriera (FFT) i kosinusowe (DCT),

▪ splot / filtracja FIR,

▪ korelacja, autokorelacja,

▪ filtracja IIR,

▪ mnożenie macierzy

Procesor sygnałowy jest zoptymalizowany do wykonywania tych operacji.
Na ich podstawie budowane są złożone algorytmy, np. kompresji sygnału.

Moduły uruchomieniowe

Moduł uruchomieniowy (evaluation board/module):

▪ płytka zawierająca procesor sygnałowy, interfejsy zewnętrzne, pomocnicze układy
(kodeki, pamięć), itp.,

▪ służy do uruchamiania, testowania, poprawiania, optymalizowania algorytmów
tworzonych przez programistę,

▪ płytka współpracuje z komputerem osobistym (przez USB),

▪ pozwala na wykonywanie programu krok po kroku i podgląd stanu procesora,
za pomocą debug probe,

▪ w docelowym urządzeniu montowany jest sam procesor, nie cała płytka
uruchomieniowa.

Moduły uruchomieniowe

Moduł uruchomieniowy z procesorem Texas Instruments C5535, wykorzystywany
podczas realizacji laboratorium ZPS

Tworzenie programu na procesor sygnałowy

▪ Kod maszynowy (machine code) – binarny zestaw instrukcji dla procesora
(np. mnożenie, skok, pętla, itp.).

▪ Programista tworzy kod źródłowy (source code) programu w postaci tekstowej:

– asembler – język niskopoziomowy,

– C, C++, itp. – język wysokopoziomowy.

▪ Kompilator (compiler) przekształca kod źródłowy na kod maszynowy.

▪ Konsolidator (linker) łączy skompilowane moduły (modules)
w program wykonywalny (executable).

▪ Gotowy program jest uruchamiany na procesorze.

Asembler

▪ Asembler (assembler) jest tekstową reprezentacją kodu maszynowego.

▪ Instrukcje procesora są zapisywane w formie mnemoników,
np. MOV – skopiuj dane, MPY – przemnóż, itp.

▪ Kod asemblera jest pisany na konkretny typ procesora.

▪ Pracuje się bezpośrednio na procesorze (np. na rejestrach).

▪ Programista ma niemal pełną kontrolę nad wynikowym kodem maszynowym.

▪ Można w ten sposób pisać zoptymalizowane algorytmy.

▪ Jest to trudne, wymaga dużego doświadczenia i dobrej znajomości procesora.

▪ (Nie piszemy kodu asemblera na laboratorium ZPS, ale wykorzystujemy gotowe
algorytmy napisane w asemblerze.)

Asembler

Fragment przykładowego programu w asemblerze na PS:

|| RPTBLOCAL OuterLoopEnd-1 ;outer loop: process a new input
MOV *AR0+ << #16, AC1 ; HI(AC1) = x(n)
||RPTBLOCAL InnerLoopEnd-1 ;inner loop: process a bi-quad

NOP_16 ; CPU_116: Remark 5682
|| MPYM *AR1+, AC1, AC0 ; AC0 = b0*x(n)

MACM *AR1+, *(AR6+T0), AC0 ; AC0 += b1*x(n-1)
MACM *AR1+, *AR6, AC0 ; AC0 += b2*x(n-2)
MOV HI(AC1), *(AR6+T1) ; x(n) replaces x(n-2)
MASM *AR1+, *(AR4+T0), AC0 ; AC0 -= a0*y(n-1)
MASM *AR1+, *AR4, AC0, AC1 ; AC1 -= a1*y(n-2)
SFTS AC1, #1 ; AC1 *= 2 (correction for Q14)
MOV rnd(HI(AC1)), *(AR4+T1) ; y(n) replaces y(n-2)

InnerLoopEnd:
AMOV AR7, AR1 ;reinitialize coeff pointer

|| MOV rnd(HI(AC1)), *AR2+ ;store result to output buffer
OuterLoopEnd:

MOV AR4, *AR3 ; Update delay pointer

Język C

▪ Język C (czasami też C++) jest często stosowany w programowaniu PS jako język
„wysokiego poziomu”.

▪ Polegamy na kompilatorze, że stworzy z kodu źródłowego C wystarczająco wydajny
kod maszynowy.

▪ Często nie jest to możliwe, kompilator nie potrafi odgadnąć wszystkich intencji
programisty, często „gra bezpiecznie” (program ma działać poprawnie,
niekoniecznie najszybciej).

▪ Trzeba używać specjalnych dyrektyw kompilatora (pragma).

▪ W porównaniu z asemblerem, wynikowy kod jest zwykle wolniejszy i zajmuje więcej
pamięci.

▪ Pisanie programów jest za to o wiele szybsze i prostsze.

▪ (Kod na laboratorium ZPS będzie tworzony w języku C.)

Język C

Fragment przykładowego programu w C na DSP:

// Real FFT of length N/2
for (i = 0; i < N / 2; i++) {

pRFFT_In[2 * i] = pInput[2 * i]; //arrange real input sequence to
pRFFT_In[2 * i + 1] = pInput[2 * i + 1]; //N/2 complex sequence..

}

memcpy (pRFFT_InOrig, pRFFT_In, N * sizeof (float));
tw_gen (w, N / 2);
split_gen (A, B, N / 2);
twiddle = (float *) w;

// Forward FFT Calculation using N/2 complex FFT..
DSPF_sp_fftSPxSP (N / 2, pRFFT_In, twiddle, pTemp, brev, rad, 0, N / 2);
// FFT Split call to get complex FFT out of length N..
FFT_Split (N / 2, pTemp, A, B, pRFFT_Out);

// Inverse FFT calculation
// IFFT Split call to get complex Inv FFT out of length N..
IFFT_Split (N / 2, pRFFT_Out, A, B, pTemp);
// Inverse FFT Calculation using N/2 complex IFFT..
DSPF_sp_ifftSPxSP (N / 2, pTemp, twiddle, pRFFT_InvOut, brev, rad, 0, N / 2);

C i Asembler razem

▪ Czy można połączyć oba języki w jednym programie? Tak!

▪ Konsolidator pozwala łączyć moduły napisane w C i w asemblerze.

▪ Krytyczne operacje przetwarzania są pisane w asemblerze, zoptymalizowane
pod kątem szybkości (np. obliczanie FFT).

▪ Ogólna „logika” programu jest pisana w C.

▪ Zazwyczaj możemy wykorzystać zoptymalizowane procedury (np. FFT, filtry)
napisane w asemblerze dla naszego procesora przez innych programistów, łącząc je
z naszym kodem.

▪ Np. Texas Instruments dostarcza dla naszego procesora C5535 bibliotekę DSPLIB,
zawierającą zoptymalizowane implementacje najczęściej wykorzystywanych
operacji przetwarzania sygnałów.

Środowisko programistyczne

Do tworzenia oprogramowania na procesory sygnałowe używa się środowiska
programistycznego złożonego z:

▪ narzędzi programistycznych (IDE)

– edytora kodu źródłowego,

– kompilatora,

– debuggera,

▪ bibliotek programistycznych (SDK)

– funkcje obsługi procesora (Processor SDK), w tym system operacyjny,

– funkcje obsługi płytki uruchomieniowej (Board SDK),

– funkcje przetwarzania sygnału (np. DSPLIB),

– funkcje pomocnicze (np. obsługa sieci).

Etap tworzenia programu

▪ Moduł uruchomieniowy podłączony do komputera PC przez USB.

▪ Program skompilowany w trybie Debug – wyłączone optymalizacje kodu.

▪ Skompilowany program jest przesyłany na procesor sygnałowy i uruchamiany.

▪ Możliwość debugowania – zatrzymania programu, sprawdzenia stanu zmiennych,
znalezienia błędów.

▪ Sprawdzenie poprawności działania programu.

▪ Do testowania wydajności należy skompilować program w trybie Release
– włączone optymalizacje kodu. Uwaga: taki program nie nadaje się do
debugowania!

Gotowy program

▪ Program jest gotowy gdy działa zgodnie z oczekiwaniami
– bez błędów i wystarczająco szybko.

▪ Program jest kompilowany w trybie Release.

▪ Program jest wgrywany do pamięci flash samodzielnego procesora (bez płytki) za
pomocą specjalnego modułu.

▪ Procesor jest gotowy do montażu w docelowym urządzeniu.

▪ Nie ma już możliwości wglądu w pracę procesora – mamy tylko wyniki jego pracy.

▪ Dlatego trzeba włożyć wystarczająco dużo wysiłku w tworzenie prawidłowo
działającego programu.

Miary wydajności procesora sygnałowego

Wydajność obliczeniowa:

▪ MIPS – liczba milionów instrukcji na sekundę,

▪ FLOPS – liczba operacji zmiennoprzecinkowych na sekundę, zwykle z przedrostkiem,
np. MFLOPS – mega (miliony),

▪ MMACS – liczba milionów operacji MAC (x ← x + a × b), specyficznych dla DSP,
na sekundę.

Wydajność energetyczna:

▪ zużycie mocy na 1 MHz częstotliwości zegara procesora, w mW/MHz, przy podanym
napięciu zasilania, mierzone pod obciążeniem (active) i w spoczynku (standby).

Cykle procesora

▪ Procesor jest taktowany zegarem o ustalonej częstotliwości, np. 100 MHz.

▪ Cykl procesora to jeden takt sygnału zegarowego. Np. 100 MHz oznacza
100 milionów cykli na sekundę.

▪ Każda instrukcja procesora wymaga określonej liczby cykli procesora (zwykle jeden
cykl, czasami więcej) do jej wykonania.

▪ Budżet procesora oznacza liczbę cykli, jaką możemy przeznaczyć na operacje
przetwarzania.

▪ Przykład: taktowanie 100 MHz, przetwarzamy próbki dźwięku z częstotliwością
48 kHz → na jedną próbkę mamy ok. 2083 cykli procesora.

▪ Jeżeli nie wykorzystujemy budżetu, często możemy obniżyć częstotliwość
taktowania procesora (np. do 80 MHz) i oszczędzić energię.

Alternatywy dla procesorów sygnałowych

Współczesne alternatywy dla klasycznych procesorów sygnałowych:

▪ procesory hybrydowe (np. ARM + DSP),

▪ układy SoC (system on chip) - zwykle mikroprocesory ARM + GPU + pamięć,
czasami posiadają rdzenie DSP,

▪ układy FPGA – programowalna architektura sprzętowa,

▪ układy ASIC – mikroprocesory o stałej architekturze, dostosowanej do programu,

▪ GPU – procesory graficzne, wspomaganie zrównoleglonych obliczeń,

▪ NPU – neural processor unit, do obliczeń związanych z sieciami neuronowymi.

	Slajd 1
	Slajd 2: Wprowadzenie
	Slajd 3: Przykład praktycznego zastosowania
	Slajd 4: Dlaczego nie mikroprocesor?
	Slajd 5: Dlaczego procesor sygnałowy?
	Slajd 6: Zastosowania
	Slajd 7: Przetwarzanie sygnału w trybie online
	Slajd 8: Przetwarzanie w czasie rzeczywistym
	Slajd 9: Algorytmy przetwarzania sygnału
	Slajd 10: Moduły uruchomieniowe
	Slajd 11: Moduły uruchomieniowe
	Slajd 12: Tworzenie programu na procesor sygnałowy
	Slajd 13: Asembler
	Slajd 14: Asembler
	Slajd 15: Język C
	Slajd 16: Język C
	Slajd 17: C i Asembler razem
	Slajd 18: Środowisko programistyczne
	Slajd 19: Etap tworzenia programu
	Slajd 20: Gotowy program
	Slajd 21: Miary wydajności procesora sygnałowego
	Slajd 22: Cykle procesora
	Slajd 23: Alternatywy dla procesorów sygnałowych

