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Zanim zaczniemy:

▪ Celem tego cyklu wykładów jest przedstawienie 
filtrów cyfrowych od strony praktycznej.

▪ Jeżeli pojawią się wzory i schematy, to służą one 
tylko ilustracji – nie uczyć się ich na pamięć!

▪ Projektowaniem filtrów zajmują się programy 
komputerowe.

▪ Ale musimy wiedzieć jakie dane im podać.

▪ Po zakończeniu cyklu wykładów, student powinien 
rozumieć: jak działają filtry cyfrowe i jak je 
zaprojektować.



Przykład praktyczny nr 1.

Mamy sygnał z czujnika (może to być dźwięk).

Patrząc na wykres czasowy widzimy, że coś jest 
nie tak jak trzeba. Ale co?



Musimy popatrzeć na widmo sygnału:

Zniekształcenia muszą zostać odfiltrowane z sygnału!

Nasz sygnał

A CO TO???



▪ Filtr cyfrowy jest algorytmem, który usuwa z sygnału 
niepożądane składowe widmowe.

▪ Najczęściej filtry działają w dziedzinie częstotliwości:

• tłumią (filtrują) pewien zakres częstotliwości,

• przepuszczają pozostałe częstotliwości bez zmian.

Do przykładu nr 1 wrócimy później.



Przykład nr 2.

Zaszumiony sygnał – wymaga wygładzenia.



Aby wygładzić sygnał, każdą próbkę zastępujemy 
średnią z N ostatnich próbek sygnału (wliczając bieżącą)
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Wynik wygładzania dla różnej liczby N:



Charakterystyki częstotliwościowe układów wygładzania:



Równanie algorytmu wygładzania:

Zapiszmy je inaczej:

gdzie h = 1 / N.

Wartości N ostatnich próbek (w tym bieżącej) 
mnożymy przez współczynnik h i dodajemy do siebie.

Jest to filtr średniej ruchomej
(moving average filter, MA).
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Równanie filtru średniej ruchomej:

Zapiszmy je w sposób bardziej ogólny:

albo krócej:

Dla filtru średniej ruchomej:
h0 = h1 = … = hN-1 = 1 / N.
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Czyli współczynniki h mogą być dowolne.
Na przykład takie (N = 101):



Jak wygląda charakterystyka częstotliwościowa 
przy takich współczynnikach?



Wracamy do przykładu nr 1. 
Czy to nam pomoże usunąć zniekształcenia?



Widmo sygnału oryginalnego oraz po przetworzeniu 
przez algorytm:



Postać czasowa – przed i po:

Sukces! Zniekształcenia zostały usunięte!



Przepis na obliczenie wyjściowych wartości próbek
- tzw. równanie różnicowe:

Algorytm realizujący obliczenia według tego równania
nazywa się
filtrem cyfrowym o skończonej odpowiedzi impulsowej
(FIR – finite impulse response filter).
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Co robi filtr FIR:

▪ bierze N ostatnich próbek,

▪ mnoży je przez współczynniki h,

▪ sumuje wyniki mnożenia,

▪ wysyła wynik na wyjście.

I to naprawdę wszystko!

y = 0

FOR i = 0 TO N-1:

y = y + x[i] * h[i]

RETURN y



Odpowiedź impulsowa
filtru FIR na pobudzenie impulsowe δ[n]

jest równa zbiorowi współczynników filtru:

(h0, h1, h2, …, hN-1)



W dziedzinie zmiennej zespolonej z, opóźnieniu sygnału 
o jedną próbkę odpowiada z-1.

możemy zapisać jako:

Jest to transmitancja filtru FIR.

Transmitancja jest transformatą Fouriera odpowiedzi 
impulsowej (czyli zbioru współczynników):

H[z] = ℱ (h[n])
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Schemat filtru FIR
(współczynniki oznacza się czasami literą b):

Pobieramy sygnał po każdym z-1 i mnożymy przez bi
– miejsca te nazywa się „odczepami” (tap).



▪ Długość filtru FIR (filter length)

• liczba współczynników filtru (N),

• czyli długość odpowiedzi impulsowej.

▪ Rząd filtru FIR (filter order)

• najwyższa potęga w transmitancji,

• zawsze o 1 mniejsza niż długość filtru (N-1)
(ponieważ współczynniki numerujemy od zera).

Np. filtr FIR o 51 współczynnikach 
ma długość 51 i rząd 50.



Transmitancję filtru można też zapisać w następujący 
sposób:

k – stałe wzmocnienie

qi – zera transmitancji

Transmitancja filtru FIR o długości N posiada:

▪ N-1 zer (w parach zespolonych sprzężonych),

▪ N-1 biegunów położonych w punkcie zerowym.

Z tego względu, filtry FIR są zawsze stabilne.
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Zera i bieguny transmitancji filtru FIR (N = 101):



Moduł transmitancji |H[z]| określa charakterystykę 
amplitudową (częstotliwościową)
– wzmocnienie filtru dla poszczególnych zakresów 
częstotliwości.



Najczęściej chcemy przepuścić wybrany zakres 
częstotliwości bez zmiany i stłumić resztę.

▪ Pasmo przepustowe (pass band) 
– wzmocnienie filtru powinno być równe 1, 
składowe przepuszczane bez zmiany.

▪ Pasmo zaporowe (stop band) 
– wzmocnienie filtru powinno być bliskie 0, 
składowe są tłumione.

▪ Częstotliwość graniczna lub odcięcia (cut-off)
– granica między pasmem przepustowym 
i zaporowym.



Filtr dolnoprzepustowy (DP) – low-pass (LP)



Filtr górnoprzepustowy (GP) – high-pass (HP)

W dziedzinie częstotliwości: GP(f) = 1 – DP(f)



Filtr pasmowo-przepustowy (PP) – band-pass (BP)

Dwie częstotliwości graniczne – górna i dolna

W dziedzinie częstotliwości: PP(f) = DP(f) · GP(f)



Filtr pasmowo-zaporowy (PZ) – band-stop (BS)

Dwie częstotliwości graniczne – górna i dolna

W dziedzinie częstotliwości: PZ(f) = DP(f) + GP(f)



Wąskopasmowy filtr pasmowo-zaporowy –
– notch filter

Służy do eliminacji jednej konkretnej częstotliwości.



Projektowanie filtru cyfrowego FIR

▪ Decyzja projektanta:

• jaki typ charakterystyki?

• jaka długość filtru (ile współczynników)?

• która metoda projektowania?

▪ Obliczenie współczynników filtru na podstawie 
podanych danych – wykonuje program 
komputerowy.

▪ Sprawdzenie obliczonych charakterystyk filtru.

▪ Ocena efektów filtracji, ew. powtórzenie projektu.



Wracamy do przykładu nr 1.

Aby usunąć zniekształcenia, potrzebny jest filtr 
dolnoprzepustowy o częstotliwości granicznej ok. 3 kHz.



Charakterystyka idealnego filtru DP 3 kHz:

Teoretycznie, powinniśmy móc obliczyć odwrotną 
transformatę Fouriera, otrzymując współczynniki filtru. 
Problem rozwiązany?



Dlaczego nie mogę mieć idealnego filtru FIR?
Przecież mam dokładnie taką charakterystykę, 
jaką chciałem mieć?

Tak, ale ta charakterystyka jest określona tylko 
w wybranych punktach skali częstotliwości:



Charakterystyka pomiędzy puntami określonymi 
podczas obliczania filtru wcale nie jest taka, 
jakiej oczekujemy:



Dlaczego nie da się zrobić filtru FIR w ten sposób, 
licząc IFFT idealnej charakterystyki widmowej?

Ponieważ idealny filtr FIR:

1. ma nieskończoną odpowiedź impulsową,
czyli N = ∞,

2. wymaga znajomości przyszłych próbek sygnału, 
czyli jest nieprzyczynowy.



Pierwszy problem (N = ∞) możemy rozwiązać przycinając 
odpowiedź impulsową do ustalonej długości N.



Zniekształcenia na skutek przycięcia odp. impulsowej:



Powodem zniekształceń jest nieciągłość odpowiedzi 
impulsowej na granicach przyciętego fragmentu:



Rozwiązaniem jest przemnożenie przycinanej 
odpowiedzi impulsowej przez funkcję okna (window).

Typowe okna: Hamminga, von Hanna, Blackmana.

Wybór okna ma wpływ na kształt charakterystyki filtru.



Odpowiedź impulsowa przycięta bez okna
oraz oknem Blackmana:



Porównanie charakterystyk widmowych
bez okna i z oknem Blackmana (N = 101):



Zniekształcenia w wyniku przycięcia odp. imp.

1. Zafalowania charakterystyki w paśmie przepustowym
- korygowane przez funkcję okna.



Zniekształcenia w wyniku przycięcia odp. imp.

2. Pasmo przejściowe – filtr zaczyna tłumić przed
i kończy za częstotliwością graniczną.
Funkcje okna poszerzają pasmo przejściowe!



Zniekształcenia w wyniku przycięcia odp. impulsowej

3. Zafalowania w paśmie zaporowym 
(zmniejszone tłumienie sygnału w tym paśmie)
- redukowane przez funkcję okna.



Jaki wpływ na kształt charakterystyki ma długość filtru?



Jakie są zalety filtrów o większej długości?

Im większe N, tym bliżej jesteśmy charakterystyki 
idealnego filtru. A zatem:

▪ węższe pasmo przejściowe,

▪ mniejsze zafalowania w paśmie przepustowym,

▪ większe tłumienie w paśmie zaporowym,

▪ ogólnie bardziej skuteczna filtracja.

A więc: lepiej zawsze używać możliwie długich filtrów?



Jakie są wady filtrów o większej długości?

Większe N oznacza:

▪ więcej obliczeń (mnożenia, dodawania), dłuższy czas 
potrzebny na przeprowadzenie filtracji,

▪ większą zajętość pamięci (bufor próbek, 
tablica współczynników),

▪ większe opóźnienie między wejściem a wyjściem 
filtru – to jest największa wada.



Wpływ okna na charakterystyki filtru

Przybliżona szerokość pasma przejściowego
oraz minimalne tłumienie w paśmie zaporowym
przy długości filtru N i cz. próbkowania fS:

Okno Szerokość Tłumienie

brak 0,9 fS / N 21 dB

von Hann 3,1 fS / N 44 dB

Hamming 3,3 fS / N 53 dB

Blackman 5,5 fS / N 74 dB



Wpływ okna na charakterystyki filtru

▪ Użycie okna powoduje zwiększenie (polepszenie) 
tłumienia w paśmie zaporowym.

▪ Zmniejszane są zafalowania w paśmie 
przepustowym.

▪ Wytłumienie współczynników na końcach okna 
powoduje zmniejszenie efektywnej długości filtru 
– poszerzenie pasma przejściowego.

▪ Trzeba to zrekompensować zwiększeniem 
długości filtru.



Okno tłumi skrajne wartości odp. imp. zatem efektywna 
długość odp. imp. jest mniejsza niż bez okna.



Okno Kaisera jest użyteczne w projektowaniu filtrów.

Posiada parametr β, który decyduje o kształcie okna.

Pozwala on regulować kształt charakterystyki filtru.



Charakterystyki widmowe filtru (N=101) 
dla okna Kaisera z różnymi wartościami β :



Zastosowanie okna Kaisera do projektowania filtru:

▪ zakładamy minimalne tłumienie w p. zaporowym 
i maksymalny poziom zafalowań w p. przepustowym 
– bierzemy większą z tych wartości (w dB),

▪ zakładamy szerokość pasma przejściowego,

▪ obliczamy β dające zadane tłumienie (ze wzoru),

▪ obliczamy długość filtru dającą zadaną szerokość.

Przykład: zakładamy min. tłumienie pz -80 dB,
max. zafalowanie pp 0,005 (46 dB), szerokość 
p. przejściowego 100 Hz. Stąd obliczamy:

β = 7,8573   N = 2410



Pozostaje drugi problem – nieprzyczynowy filtr.

Możemy go łatwo rozwiązać przesuwając przyciętą 
odpowiedź impulsową tak, aby zaczynała się w zerze.



Praktyczna interpretacja tego przesunięcia:

▪ Filtr nieprzyczynowy o długości N=2M+1 potrzebuje:

• M poprzednich próbek sygnału,

• bieżącą próbkę sygnału,

• M przyszłych próbek sygnału.

▪ Nie mamy jeszcze M przyszłych próbek, musimy 
na nie poczekać M okresów próbkowania.

▪ Wynik filtracji bieżącej próbki pojawi się na wyjściu 
filtru po M okresach próbkowania (opóźnienie).
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Charakterystyka częstotliwościowa filtru FIR:

|H(f)| – charakterystyka amplitudowa

ϕ(f) – charakterystyka fazowa
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Charakterystyka fazowa filtru FIR projektowana 
metodami opisanymi na wykładzie jest zawsze
(odcinkami) liniowa. Nieciągłości fazy wynikają z jej 
cykliczności (zawijanie wokół 2π).



Co nam daje liniowość fazy filtru FIR?

Opóźnienie grupowe (group delay) jest równe
ujemnej pochodnej charakterystyki fazowej:

Opóźnienie grupowe dla częstotliwości f
= nachylenie charakterystyki fazowej 
dla tej częstotliwości (z odwróconym znakiem).
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Charakterystyka opóźnienia grupowego filtru FIR

Liniowa faza = stała pochodna = stałe opóźnienie 
grupowe, równe (N-1)/2, czyli tyle, o ile przesunęliśmy 
odpowiedź impulsową.



Co nam daje stałe opóźnienie grupowe?

▪ Jeżeli mamy sygnał o złożonym widmie (np. mowa, 
muzyka), to wszystkie składowe widmowe są 
opóźniane przez filtr o tę samą liczbę próbek.

▪ Zależności fazowe między składowymi widmowymi 
na wyjściu filtru są takie same, jak na wejściu.

▪ Liniowofazowy filtr FIR nie wprowadza zniekształceń 
fazowych – jest to ważna cecha tych filtrów.

▪ (Można projektować filtry FIR, które celowo nie mają 
liniowej fazy.)



Ilustracja opóźnienia grupowego 
– widoczne opóźnienie sygnału po filtracji.



Opisana metoda projektowania filtrów FIR nosi nazwę 
metody okienkowania (windowing).

Podsumowując:

▪ projektujemy idealną charakterystykę w dziedzinie 
częstotliwości,

▪ obliczamy odpowiedź impulsową (IFFT),

▪ przycinamy funkcją okna do żądanej długości,

▪ przesuwamy na osi czasu tak aby zaczynała się w 0.

I gotowe, mamy współczynniki filtru.



Dla typowych charakterystyk (DP, GP, PP, PZ) zwykle 
obliczamy odpowiedź impulsową bezpośrednio, 
bez konieczności liczenia IFFT.

Dla filtru dolnoprzepustowego o częstotliwości 
granicznej fc i cz. próbkowania fS:
(nie uczyć się wzorów na pamięć!)

sinc(x) = sin(πx)/(πx)

Obliczoną odpowiedź trzeba przemnożyć przez okno 
i przesunąć o (N-1)/2.
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Filtr górnoprzepustowy można otrzymać z filtru DP.

W dziedzinie widma: GP(f) = 1 – DP(f).

W dziedzinie czasu:

W praktyce:

▪ obliczamy odpowiedź dla filtru DP o tej samej 
częstotliwości granicznej,

▪ odwracamy znak każdej wartości,

▪ dodajemy 1 do wartości dla czasu zerowego,

▪ mnożymy przez okno i przesuwamy.
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Porównanie odpowiedzi impulsowych DP i GP



Filtr pasmowo-przepustowy:

▪ widma: PP(f) = DP(f) · GP(f) = DPg(f) – DPd(i)

▪ w dziedzinie czasu – dwie metody:

Filtr pasmowo-zaporowy:

▪ widma: PP(f) = DP(f) + GP(f) = 1 – PP(f)

▪ w dziedzinie czasu – dwie metody:
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Porównanie odpowiedzi impulsowych PP i PZ



Projektując filtr w ten sposób możemy różnie dobrać 
długość filtru N.

▪ Nieparzysta długość filtru N

• filtr FIR typu pierwszego (I)

• środkowa próbka wyznacza symetrię

• możliwe wszystkie charakterystyki: DP, GP, PP, PZ.

▪ Parzysta długość filtru N

• filtr FIR typu drugiego (II)

• dwie symetryczne połowy

• wzmocnienie dla cz. Nyquista musi być zerowe!

• możliwe więc tylko filtry: DP i PP.



Odpowiedź impulsowa filtru typu I i II



Możliwe jest również odwrócenie znaku „lewej” części 
odpowiedzi impulsowej – powstają w ten sposób 
filtry antysymetryczne:

▪ typ III – nieparzysty

• zerowe wzmocnienie dla cz. 0 i Nyquista

• tylko filtry PP

▪ typ IV – parzysty

• zerowe wzmocnienie dla częstotliwości 0

• tylko filtry GP i PP

Typy III i IV są używane tylko do specjalnych przypadków 
(np. filtr Hilberta).



Typy filtrów FIR zebrane razem:

▪ Najczęściej korzysta się z typu I (uniwersalny).

▪ Filtr typu II jest trochę prostszy w implementacji 
(dwie symetryczne połowy) – wykorzystuje się 
czasem do filtrów DP i PP.

▪ Z typów III i IV nie korzysta się do typowych filtrów.

Typ Symetria Długość DP GP PP PZ

I symetr. nieparzysta + + + +

II symetr. parzysta + – + –

III asym. nieparzysta – – + –

IV asym. parzysta – + + –



Normalizacja wzmocnienia filtru

▪ Zwykle chcemy aby wzmocnienie filtru w paśmie 
przepustowym było równe 1.

▪ Wymagana jest więc normalizacja wzmocnienia.

▪ Dla filtru DP sprawa jest prosta:

• możemy wybrać do normalizacji częstotliwość 0,

• wzmocnienie na cz. 0 jest równe sumie 
współczynników odpowiedzi impulsowej,

• zatem dzielimy każdy współczynnik przez sumę 
wszystkich współczynników.



Normalizacja wzmocnienia filtru

▪ Dla filtru GP wybieramy częstotliwość Nyquista:

▪ Dla filtrów PP i PZ wybieramy częstotliwość 
środkową f – średnią dolnej i górnej cz. granicznej.

▪ Dzielimy współczynniki przez s.


−=




























=

M

Mn Sf

f
njnhs 2exp][

( )( )
−=

=
M

Mn

nnhs cos][



Optymalne metody projektowania filtrów

▪ Metoda okienkowa jest prostą i działającą metodą 
projektowania filtrów, ale nie jest optymalna.

▪ „Optymalny” oznacza „najlepszy z możliwych”.

▪ W naszym przypadku „optymalny” oznacza 
zaprojektowaną charakterystykę H(f), która jest 
możliwie najbliższa idealnej charakterystyce D(f).

▪ Optymalizacja jest przeprowadzana za pomocą 
skomplikowanych algorytmów matematycznych.



Metoda najmniejszych kwadratów
(least squares, LS, LSQ)

▪ Dla zaprojektowanej charakterystyki H(f) i idealnej 
charakterystyki D(f), mamy funkcję błędu:

▪ Algorytm minimalizuje funkcję E – znajduje zbiór 
współczynników dający jak najmniejszy błąd.

▪ Obliczenia są wykonywane za pomocą operacji 
na macierzach (nie iteracyjnie).
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Metoda najmniejszych kwadratów

▪ Podajemy skrajne częstotliwości pasm 
przepustowych i zaporowych oraz wzmocnienie
w każdym z pasm.

▪ Możliwe jest nadanie wag poszczególnym zakresom 
częstotliwości. Np. większa waga dla pasma 
zaporowego = dopuszczamy mniejsze błędy 
w tym zakresie.

▪ Algorytm dopasowuje charakterystykę do zadanych 
parametrów.

▪ W pasmach przejściowych kształt charakterystyki 
jest nieokreślony („jak wyjdzie”).



Porównanie metody LS i okienkowania
filtr DP N=301, pasmo przejściowe 3-4,2 kHz



Zmiana pasma przejściowego wokół cz. granicznej



▪ Metoda LS stara się objąć pełne pasma przepustowe 
i zaporowe.

▪ Efektem jest „przeciąganie” charakterystyki 
na pasmo przejściowe.

▪ Większa długość filtru daje większe tłumienie 
w paśmie zaporowym i bardziej strome opadanie 
charakterystyki w paśmie przejściowym.

▪ Wadą filtrów LS są nierównomierne zafalowania 
w pasmach zaporowych i przepustowych.



Metoda Parksa-McClellana
nazywana też Remez (niepoprawnie, ale prościej zapamiętać)

▪ Algorytm iteracyjny.

▪ Także stara się dopasować do idealnej charakteryst.

▪ Oblicza współczynniki stosując aproksymację 
Czebyszewa (algorytm Remeza).

▪ W kolejnych iteracjach koryguje współczynniki 
tak, aby zminimalizować maksymalny błąd.

▪ Algorytm kończy działanie gdy kolejne iteracje 
nie zmniejszają już błędu E.
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Metoda Parksa-McClellana

▪ Założenia projektowe są identyczne, jak dla metody 
LS – częstotliwości graniczne i wzmocnienia pasm, 
ewentualnie wagi dla poszczególnych pasm.

▪ Algorytm jest wrażliwy na dobór parametrów 
początkowych. W niektórych przypadkach nie jest 
w stanie uzyskać zbieżności i otrzymujemy błąd 
zamiast wyniku. Trzeba skorygować parametry.

▪ Algorytm opracowany w 1972 r. stał się standardem 
w projektowaniu filtrów FIR za pomocą programów 
komputerowych.

▪ Jest wolny (co nie ma praktycznego znaczenia).



Porównanie metody P-M  i okienkowania
filtr DP N=301, pasmo przejściowe 3-4,2 kHz



▪ Podobnie jak w metodzie LS, metoda P-M 
dopasowuje się do pasm przepustowych 
i zaporowych. Pasma przejściowe są nieokreślone.

▪ Również „przeciągane” są pasma przejściowe.

▪ Tłumienie w paśmie zaporowym wynika z długości 
filtru i szerokości pasma przejściowego.

▪ Różnica w porównaniu z LS: poziom zafalowań jest 
stały dla wszystkich częstotliwości, we wszystkich 
pasmach przepustowych i zaporowych.

▪ Z tego względu, metodę P-M często nazywa się 
metodą projektowania filtrów o równomiernych 
zafalowaniach – equiripple. 



Przykład dla zbyt wąskiego pasma przejściowego
(3-3,2 kHz). Filtr N=301 nie jest w stanie zapewnić 
dobrego tłumienia. Trzeba zwiększyć długość filtru.



Podsumowanie metod optymalizacyjnych:

▪ Metoda okienkowania zwykle zaczyna tłumić 
„za wcześnie” i osiąga pasmo zaporowe „za późno”.

▪ Metody optymalizacyjne (LS, P-M) zapewniają, 
że pasma przepustowe i zaporowe są zgodne 
z zadanymi częstotliwościami.

▪ Charakterystyka w paśmie przejściowym nie jest 
określona – nie mamy na nią wpływu.

▪ W metodach optymalizacyjnych musimy zapewnić 
dostatecznie szerokie pasmo przejściowe 
w odniesieniu do długości filtru, aby uzyskać dobre 
tłumienie w paśmie zaporowym.



Uwagi o częstotliwościach

▪ Projektując filtry posługujemy się zwykle 
częstotliwościami w hercach [Hz].

▪ Dla filtru nie ma znaczenia częstotliwość fc w Hz.
Istotna jest pulsacja (od 0 do 2π), liczona względem 
częstotliwości próbkowania fS (odpowiada 2π).

▪ Często podaje się pulsację w formie (x·π).

▪ Czasami pomija się π, podając tylko liczbę od 0 do 1,
gdzie 1 oznacza częstotliwość Nyquista.
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Uwagi o częstotliwościach

▪ Inną konwencją jest częstotliwość unormowana:

▪ Częstotliwość unormowana (bez jednostki) 
przyjmuje wartości od 0 do 1, gdzie 1 oznacza 
częstotliwość próbkowania.

▪ Możemy stosować wartości od 0 do 0,5,
0,5 oznacza częstotliwość Nyquista.
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Komputerowe projektowanie filtrów FIR

Narzędzia do projektowania filtrów:

▪ programy z interfejsem GUI – najczęściej 
komercyjne, wygodne projektowanie,

▪ funkcje dostępne w językach programowania
– duża elastyczność,

▪ oprogramowanie online w Internecie – zwykle 
kiepska jakość i skomplikowane interfejsy,

▪ metodę okienkowania można zaimplementować 
samodzielnie.



filterDesigner: Matlab + Signal Processing Toolbox



Pokażemy przykłady projektowania filtrów FIR 
za pomocą darmowych narzędzi 
– języka Python z modułami SciPy + NumPy.

Dokumentacja:
https://docs.scipy.org/doc/scipy/reference/signal.html

Wszystkie przykłady zakładają, że wcześniej wykonano 
instrukcje:

Częstotliwość próbkowania = 48 kHz

import numpy as np
import scipy.signal as sig

https://docs.scipy.org/doc/scipy/reference/signal.html


Sygnał testowy – suma pięciu „sinusów” + szum,
częstotliwości: 500, 1000, 1500, 2000, 2500 Hz



Projekt 1. Chcemy usunąć pierwsze dwa sinusy.

▪ filtr górnoprzepustowy

▪ częstotliwość graniczna = 1250 Hz

▪ zakładamy szerokość pasma przejściowego = 200 Hz

▪ stosujemy okno Hamminga – szacunkowa minimalna 
długość = 3,3 * (48000 / 200) = 792

▪ wybieramy długość N = 801 (z zapasem)
(pamiętajmy: dla GP musi być nieparzysta)



Stosujemy procedurę okienkowania, z obliczaniem 
odpowiedzi impulsowej w dziedzinie czasu.

▪ długość filtru (801)

▪ częstotliwość graniczna (1250)

▪ typ okna ('hamming')

▪ typ charakterystyki ('highpass' = GP)

▪ częstotliwość próbkowania (48000)

h1 = sig.firwin(801, 1250, window='hamming’,
pass_zero='highpass', fs=48000)



Projekt 1 – wynik



Projekt 1a – to samo, ale wykorzystamy okno Kaisera.

▪ Szerokość pasma przejściowego: 200 Hz, 
jak poprzednio.

▪ Minimalne tłumienie: 60 dB.

# musimy znormalizować szerokość pasma
nk, beta = sig.kaiserord(60, 2 * 200 / 48000)
if nk % 2 == 0:

nk += 1  # dla GP długość musi być nieparzysta
# nk=873, beta=5.65326

h1a = sig.firwin(nk, 1250, window=('kaiser', beta),
pass_zero='highpass', fs=48000)



Projekt 1a - wynik



Projekt 2 – zostawiamy tylko drugi i trzeci sinus.

▪ Filtr pasmowo-przepustowy

▪ Częstotliwości graniczne: 750 Hz, 1750 Hz

▪ Szerokość pasma przejściowego: 20 Hz

▪ Stosujemy to samo okno: Hamminga, N = 801



▪ Tym razem zastosujemy metodę okienkowania 
z obliczaniem w dziedzinie częstotliwości.

▪ Zakładamy idealną charakterystykę widmową:

• częstotliwości graniczne pasm przepustowych
i zaporowych:
0, 730, 750, 1750, 1770, 24000

• wzmocnienia filtru na tych częstotliwościach:
0, 0, 1, 1, 0, 0

h2 = sig.firwin2(801, (0, 730, 750, 1750, 1770, 24000), 
(0,   0,   1,    1,    0,     0),

window='hamming', fs=48000)



Projekt 2 – wynik



Projekt 3 – usunięcie środkowego sinusa

▪ Filtr pasmowo-zaporowy typu notch

▪ Cz. graniczna 1500 Hz, p. przejściowe 200 Hz.

▪ Zastosujemy metodę najmniejszych kwadratów.

▪ Sposób definiowania charakterystyki 
– taki sam jak w projekcie 2.

h3 = sig.firls(801, (0, 1290, 1490, 1510, 1710, 24000), 
(1, 1, 0, 0, 1, 1), 

fs=48000)



Projekt 3 – wynik

Jeżeli chcemy większe tłumienie, musimy zwiększyć 
długość filtru i/lub poszerzyć pasmo przejściowe.



Projekt 4 – usuwamy drugi i czwarty sinus, korzystając 
z metody Parksa-McClellana („Remez”)

▪ Projektujemy filtr podając częstotliwości graniczne 
pasm oraz wzmocnienia – jedno na każde pasmo.

▪ Redukujemy pasma przejściowe do 100 Hz
(dla 200 Hz algorytm nie uzyskał zbieżności).

h4 = sig.remez(801, 
(0, 890, 990, 1010, 1110, 1890, 1990, 2010, 2110, 24000),
( 1, 0, 1, 0, 1), 
fs=48000)



Projekt 4 - wynik



Projekt 4a: nie usuwamy sinusów, ale tłumimy je 
o 20 dB (współczynniki: [1, 0.1, 1, 0.1, 1] )



Operacja filtracji FIR filtrem o transmitancji H:

Filtr FIR jest układem LTI:

▪ jest liniowy,

▪ odpowiedź impulsowa jest stała w czasie.

A zatem w dziedzinie czasu:

A więc: filtracja FIR jest operacją splotu liniowego 
współczynników filtru z próbkami sygnału.
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Sytuacja praktyczna: filtr operuje na sygnale ciągłym, 
teoretycznie nieskończonym (np. dźwięk z mikrofonu).

Możliwe podejścia:

▪ przetwarzanie sygnału próbka po próbce

• minimalizacja opóźnień

▪ przetwarzanie blokowe – zebranie bloku próbek, 
przetworzenie całego bloku naraz

• zwiększa opóźnienie (np. blok 1024 próbek dla 
fS= 48 kHz: opóźnienie 21,3 ms),

• ale daje możliwość bardziej wydajnej filtracji.



O czym trzeba pamiętać:

▪ włączamy się z filtracją w pewnym momencie,

▪ wcześniej istniały pewne próbki sygnału 
(nie mamy ich),

▪ filtr zakłada, że wcześniej w sygnale były zera
(co zazwyczaj nie jest prawdą),

▪ zatem pierwsze (N-1)/2 wyniki filtracji (dla filtru 
liniowofazowego) są błędne (nie ma wystarczających 
danych),

▪ tworzą one stan nieustalony (transient) filtru,

▪ wyniki te powinniśmy odrzucić.



Ilustracja stanu nieustalonego filtru:

filtr GP, długość 801 – stan nieustalony trwa 400 próbek



Skoro filtracja FIR jest splotem, to możemy wykonać ją 
w dziedzinie częstotliwości:

▪ obliczyć transmitancję filtru 
(FFT na współczynnikach),

▪ obliczyć widmo bloku próbek (FFT),

▪ przemnożyć je przez siebie,

▪ wykonać odwrotne przekształcenie Fouriera (IFFT),

▪ mamy wynik splotu / filtracji.



▪ Jeżeli po prostu przemnożymy transformaty, 
otrzymamy wynik splotu kołowego – wyniki zawiną 
się i dodadzą się do siebie. Nie o to chodzi.

▪ Filtracja FIR jest splotem liniowym.

▪ Splot liniowy sygnałów o długościach L, M
daje wynik o długości L+M-1.

▪ Aby wykonać splot liniowy, musimy uzupełnić zerami 
blok próbek i blok współczynników do długości 
co najmniej L+M-1, przed obliczeniem transformaty.



Po co robić splot „na około”? Czy tak będzie szybciej?

Czas splotu sygnału x z samym sobą, obie metody
(obliczone za pomocą scipy.signal.choose_conv_method)



▪ Ze wzrostem długości sygnału, czas wykonania 
splotu rośnie w przybliżeniu:

• wykładniczo dla splotu w dziedzinie czasu,

• liniowo dla splotu w dziedzinie częstotliwości.

▪ Jedynie dla małych długości (<500) splot 
w dziedzinie czasu jest wyraźnie szybszy.

▪ Dla większych długości (>1000): splot w dziedzinie 
częstotliwości jest szybszy, różnica rośnie 
ze wzrostem długości sygnału.

▪ Splot w dziedzinie częstotliwości nazywa się 
szybkim splotem (fast convolution, FFT convolution)



Uwagi o filtracji FFT w dziedzinie częstotliwości

▪ Transformatę współczynników filtru wystarczy 
obliczyć tylko jeden raz – nie zmienia się.

▪ Czas wykonania szybkiego splotu zależy od 
wydajności algorytmu FFT:

• niektóre implementacje wymagają, aby długość 
transformaty była potęgą dwójki,

• w większości współczesnych implementacji FFT 
zaleca się, aby długość transformaty była 
iloczynem niskich liczb pierwszych (2, 3, 5, 7).



Przykład praktyczny:

▪ przetwarzamy bloki próbek o długości L=1024

▪ filtr ma długość M, rozmiar splatanych bloków musi 
mieć długość N = L+M-1

▪ przyjmijmy N = 2048 = 211 (dla wygody FFT)

▪ wtedy M = N–L+1 = 1025
(długość filtru jest nieparzysta – to dobrze)

▪ każdy blok 1024 próbek uzupełniamy 1024 zerami, 
liczymy FFT, mnożymy przez transformatę 
współczynników, liczymy IFFT

▪ dostajemy 2048 próbek wyniku i … co dalej?



▪ Na wejściu mamy L próbek, na wyjściu musi być 
tyle samo próbek (L).

▪ Dostajemy L+M-1 wyników. Co zrobić
z nadmiarowymi wynikami? Odrzucić?

▪ Załóżmy, że przetwarzamy któryś z kolei blok.

▪ Pierwsze M-1 wyniki (czerwone) są błędne
– stan nieustalony filtru.

▪ Kolejne L-M+1 wyniki (zielone) są poprawne.

▪ Ostatnie M-1 wyniki (żółte) – co z nimi zrobić?

0 M-1 L L+M-1



Rozwiązanie problemu jest proste: do pierwszych 
M-1 próbek wyniku (stan nieustalony) dodajemy 
„nadmiarowe” M-1 próbki z poprzedniego bloku,
pierwsze L próbki wyniku wysyłamy na wyjście.

+

+

+

+

+

…



Schemat postępowania:

1. Pobierz blok L próbek z wejścia, uzupełnij zerami 
do długości N ≥ L+M-1, oblicz FFT.

2. Przemnóż przez transformatę współczynników filtru.

3. Oblicz IFFT wyniku mnożenia.

4. Do pierwszych M-1 wartości wyniku dodaj 
zawartość bufora.

5. Wyślij pierwsze L wartości wyniku na wyjście.

6. Zapisz pozostałe M-1 wartości do bufora.

7. GOTO 1.



▪ Opisana metoda splotu blokowego sygnału
nosi nazwę overlap-add (OLA) 
- zakładkowanie z dodawaniem.

▪ Umożliwia ona filtrację ciągłych bloków próbek, 
w dziedzinie częstotliwości lub czasu.

▪ W porównaniu z filtracją „próbka po próbce”:

• skracamy czas obliczeń (gdy N jest duże),

• zwiększamy opóźnienie przetwarzania
– musimy poczekać aż uzbiera się cały blok 
próbek, dopiero wtedy je przetwarzamy.



Istnieje alternatywna metoda: overlap-save (OLS)

▪ bloki próbek wejściowych pobieramy „na zakładkę” 
– przesuwamy okno o L próbek, M-1 próbek 
powtarza się w kolejnym bloku,

▪ obliczamy splot tak jak w OLA,

▪ odrzucamy cały stan nieustalony (M-1 próbek),

▪ resztę (L próbek) wysyłamy na wyjście.

Złożoność obliczeniowa metod OLA i OLS jest taka sama. 
Wybieramy metodę prostszą do implementacji 
w danym systemie.



PODSUMOWANIE – zalety filtrów FIR:

▪ bardzo prosty algorytm (splot liniowy),

▪ względnie łatwe projektowanie,

▪ typowe filtry mają liniową fazę, a więc stałe 
opóźnienie dla wszystkich częstotliwości,
nie wprowadzają zniekształceń fazowych,

▪ zawsze są stabilne: jeżeli wyłączymy sygnał 
wejściowy, po pewnym czasie sygnał na wyjściu 
również stanie się zerowy,

▪ łatwe do implementacji w typowych systemach DSP.



PODSUMOWANIE – wady filtrów FIR:

▪ musimy stosować filtry o dużej długości 
aby zapewnić dobre tłumienie i wąskie pasmo 
przejściowe,

▪ dużo obliczeń dla „długich” filtrów 
(zalecane stosowanie szybkiego splotu),

▪ duża zajętość pamięci (współczynniki, bufor próbek),

▪ opóźnianie sygnału przez filtry – zwiększa się 
z długością filtru, może być odczuwalne, 
np. przy przetwarzaniu dźwięku.
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